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ABSTRACT

In this paper we investigate the relationship between the stretching
tensor 2 and the logarithmic (Hencky) strain Any, with V the left
stretch tensor. We establish the simple formula

(AnV) - sym (j3l),

which holds for arbitrary three-dimensional motions. Here F is the
deformation gradient, (1n))0 is the time derivative of Any measured in a
coordinate system which rotates with the left principal strain axes, and Nr
is the spin of the right principal strain axes. we use this formula to show
that 2 - (tnV), (or, equivalently, p - (Int)* , the Jaumann derivative of
ln,V) , if and only if the characteristic spaces of the right stretch tensor

are constant on any time interval in which the number of distinct
principal stretches is constant. Finally, we show that the asymptotic
approximation

j-(.)* + O(e3

holds whenever the displacement gradient ! satisfies ow. - 0(1),
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SIGNIFICANCE AND EXPLANATION

,Experimentalists often report strain data using logarithmic measures of

strain, and these measures have also been utilized extensively for theoretical

purposes in the recent engineering literature. - With V f 4 i f

(summation implied) the left stretch tensor,,we define the logarithmic

(Hencky) strain tensor by InV - ( n i) i io  The Xi and ti are

referred to as the principal stretches and left principal axes of strain,

respectively. -This logarithmic strain measure has been shown to have certain

advantages in the formulation of the deformation theory of plasticity.

Whenever the principal axes of strain are fixed throughout the motion, it

is known that the simple relationship

2 - (Inyj)

holds, with 2 the stretching tensor. Previous work, however, has failed to

find an analogous formula in the general case. Some researchers have

therefore concluded that the Hencky strain measure has very limited

applicability.

The purpose of this paper is to extend the abww.formula to arbitrary

three-dimensional deformations We are able to find a simple relationship

between J and (AnyV) O , where e time derivative of Any is now measured

by an observer rotating with the i" By generalizing the idea of fixed

principal axes, we show precisely when the exact formula D - (Any)0 holds.

We conclude by showing that, for sufficiently small deformations, (LnV)* is

-' an excellent approximation to 2.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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STPAIN MAN D THE STBCUNG TENSOR

M:rt:o E. Qwt i and Kathleen Spear*

1. Introduction.

The logarithmic strain introduced by Hencky [31 has long

enjoyed favored treatment in the metallurgical and materials

science literature, where it is referred to as the "true" or
"natural" strain. Its use, however, has been primarily limited

to studies in which the principal axes of strain are fixed. In

such problems, the simple relationship

exists between the stretching tensor and the logarithm of

the left stretch tensor Y.

In this paper, we investigate the question of whether an

analogous relationship exists for general three-dimensional

deformations. Truesdell and Toupin [91 1 note that the Hencky

strain has never been successfully applied in general. Recent

attempts to remedy this situation include the work of Hill [41,

who argues that logarithmic strain measures have inherent

advantages in certain constitutive inequalities. He finds the

rather complicated relation
rCie

(4 U) }2 2,

pp. 269-270. 0
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with the components of (4n W and taken with respect

to eigenvector bases of Y. and Y, respectively. (Here I is

the right stretch tensor and the X are the principal stretches;

i.e., the eigenvalues of Q.. )

Both Hutchinson and Neale (5] and Staten and Rice [81 find

Hencky strain to be useful in the formulation of the deformation

theory of plasticity, although St6ren and Rice decide that the

* - general relation between D and (4a " is "very complicated".

They conclude that 4n Y is *essentially intractable" as a strain

measure. Fitzgerald [1) decides that the utility of logarithmic

strain is limited to problems with fixed principal strain axes.

In addition to this negative concensus on the applicability of

Hencky strain measures, the above authors all consider only

strains for which the principal stretches are distinct, and

do not rigorously treat the possibility that the principal axes

of strain may not be uniquely defined.

We here attempt to give a complete answer to the general

three-dimensional problem. We begin by establishing a simple

general formula relating and 4n V:

. "-n1 - sym (MI 1

Here K is the deformation gradient, P is the spin of the right

principal axes of strain, and (4n y)O is the time derivative of

4n y measured by an observer rotating with the left principal

axes of strain. We use this formula to prove that - (Ln V)*

(or, equivalently, - ( Y) , the Jaumann derivative of Ln

if and only if the characteristic spaces of S are independent

of time on any time interval in which the number of distinct

:.



3

principal stretches is constant. Finally, we show that for

motion* which are small in the sense that the displacement gradient

IL - - satisifes O( 0E), f= Ol(), we have the estimate

( 3).

Since the error term is two orders-of-magnitude higher than
* *

(4n V) , we conclude that (4n y) is, in fact, an excellent

approximation to R. in this instance.

L
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2. Preliminaries.1

Consider a motion of a body, and let EMt denote the

deformation gradient corresponding to a given material point.

At each t (in a fixed time interval) EFM s 3 mti

with strictly-positive determinant, and hence admits the polar

decomposition

where gVt) and Y,(t are symetric, positive-definite, while

JL(t) is proper orthogonal. Y, and Y., respectively, are called

the right and left stretch tensors. we assume that E is smooth

(i.e., continuously differentiable); then

* l 1

is the velocity gradient,

I T

the stretching tensor, and

1 T

the spin tensor. (Here T denotes the transpose of k.)

The princi~al stretches are the eigenvalues ?-if i - 1,2,3,
2

of , (or Y); since Y. is smooth, we may, without lose in

generality, choose the three functions Yeit) to be smooth3

1W0 follow the notation and terminology of ! 23.
2 Cf. (2], p. 23.
3Cf. Kato (61, Thin. 6.9, p. 111.
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in t. An orthonormal basis [.jti of eigenvectors of j. (where

corresponds to Xi) is called a right principal basis. We assume

that one such basis { ] is given, and that each Ei(t) is smooth
1

in t. Then (h) defined by

is a left principal basis; that is, ij3 is an orthonormal basis of

eigenvectors of y corresponding to [Xin view of the spectral

theorm,2 we have the representations

Here t ® i with components abj is the tensor product of a

and k, and sunnation over repeated indices is implied. Also,

X - Iih 40 Xi. (2)

The characteristic space for at time t, corresponding to

the principal stretch X,, say, is the set of Dl" vectors X such

that

S(t)X . )i(t)v,

so that coincident principal stretches correspond to the same

characteristic space.

Let 19j) be a smooth, time-dependent orthonormal basis. Then

the corresponding twirl tensor 0 is the skew tensor function

defined by

'This is an assumption: s smooth does not necessarily yield the
existence of a smooth basis (cf. Kato [6], Example 5.9, p. 115).

2Cf., e.g., [21, p. 11.

-- . . -
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Q(1 in skew since -6j implies that ri + Il "
9.j-' + ji."j - 0.) Given any smooth tensor function A, the

co-rotational derivative A* of A relative to Lj.d is defined

by

-A+ AO - (A

and represents the time derivative of measured by an observer

rotating with Ll(t),3. Another important notion is the Jaumann

derivative A of A, given by

+ WA,

with E the spin.

linally, the tensor logarithm, 4n, maps symmetric, positive-

definite matrices into symetric matrices and is defined to be

the inverse of the exponential function. In particular,

IMP e.g., 171, p. 155.

" . - " i i , .,
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3. Relationship between D and (4n Y).
_denote the twirl tensor corresponding

Lto EA3 and ( ) the co-rotational derivative relative to

.j). Then

: 4  n Y) . (4)

Proof. Differentiation of M2 gives

(4A.) (lil/ j)$ Oi 0 k Un Xi) 41~ 0 * + (4 X±) 11 *k1,
-(ili)&i 0 ~4 .044nY. - (4n X~4,.

with the twirl tensor correspondingi to E$.Ths

(4n X)0(I±k

Next, by (1) and (2) ,

-(4n +1 .5L- S.r 1  (5)

This completes the proof, as (4) is the symmetric part of (5).

since

(4) may also be written in the form

.. . . . . ..... . . . ..<.
' ' " . . . . . . . . . . . . . . . . . . . .



7

". 8

D (ta X) *+ (4n X) sym-~ -F (P-W n V (6)

we will use (6) in later calculations.

Remark. The term ME represents the spin of the right

principal basis Ex} as measured by an observer deforming with

the body. (Let EZij be a basis fixed in space, and ( 3 a basis

deforming with the body, i.e., i - [t" Then the components of

relative to (x) are the same as those of relative

to k.

Remark. Similar arguments show that

T
L::.P Z-(4- sO" a - sY€ LU ,

where ( ) is the co-rotational derivative relative to E ,

AAl

rather than [3

i.. .. . .

• °.2.21." ... . . ..'-" i". .. " - -i " .:i - :- :
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4. When does D - (4n )?

in this section we present a condition on the principal strain

axes under which the formula - ( n V)O  is valid. To state this

result precisely it is necessary to extend the notion of fixed

principal axes of strain. This idea makes no sense when

two or more of the principal strains coalesce, for at those

times the axes are not- uniquely defined. The characteristic

spaces, however, are uniquely defined, but change in type depending

on the number n(t) of distinct principal stretches: when

n(t) - 3 the characteristic spaces are three mutually perpen-

dicular lines; when n(t) - 2 the characteristic spaces are a

line and a plane perpendicular to itj when n(t) - 1 the char-

acteristic space is all of I 3 . Thus it only makes sense to

demand that the characteristic spaces be independent of time

on time intervals during which n(t) remains constant.

Precisely then, let n(t) denote the number of distinct

principal stretches at time t. We say that the right principal

axes are essentially fixed if the right stretch tensor U has

characteristic spaces which are fixed in time on any time

interval during which n(t) is constant.

We are now in a position to state our main result.

2. The following are equivalent:

(a) The right principal axes are essentially fixed.

(b) The co-rotational derivative of 4n V corresponding

to the left principal basis 14 1 satisfies

_~R ( n "



72.-

10

(c) The Jaumann derivative of 4n V satisfies
, *

-(4n

This theorem has the following obvious

or1oljr. Suppose that the three principal stretches are

distinct. Then the formulae

R i.(4nY, R.in( n

hold if and only if the three right principal axes are fixed for

all time.

Of course, the right principal axes are the three lines

generated by the basis vectors

The next two lemmas facilitate the proof of Theorem 2. In

these lemmas and in their proof, Or and Q1,' respectively, denote

the twirl tensors corresponding to the right and left principal

bases, [[1Ed and

kq a 1. Let T be a time interval of nonzero length on

which n(t) is constant. Then the following are equivalent:

() During T the characteristic spaces of are

independent of time.

(ii) QrI ar- on T.



Proof. we begin by noting that

Ej~ ~ "rY) Xj - M r - X r YUrj

- (k I -L )j- RSrr~j -(7)

came 1 In-3). By (7), (11) Is equivalent to -on T,

and since - (1) and (ii) are equivalent.

Case 2 (n-2). Here (using the spectral theorem) we may,

without loss in generality, write Y oft T in the form

so that the line spanned by y.1(t) and the plane perpendicular

to x1(t) are the characteristic spaces. Assume that (ii) holds.

Then, since 1, 0 12, we conclude from.(7) that

.2"" -£'~rl-0 (8)

on T. Thus

41 E l3 F-3 0i

and since £l*Fl -0, we have E1 - constant on T, which implies (i).

Conversely, if (i) holds, the above argument in reverse

shows that (9) is valid. Condition (ii) then follows from (7),

as ?X2 X3 on T.

Case 3 (n-1). Here

Y(t) m-
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on T, and the conditions i) and (ii) are satisfied identically.

This completes the proof of Lema 1.

Z. The following are equivalent:

(i) The right principal axes are essentially fixed.

(ii) - (for all time).

Proof. That (ii) implies (i) follows trivially from Lemua 1.

If i) holds, then A comutes with U on all time intervals

of nonzero length during which n(t) is constant (by Lemma 1).

In view of the continuity of the ki(t), n(t) is piecewise

constant, and for any time tO at which n(t) jumps there are

right and left intervals (a,to) and (tolb) of nonzero length

on which n(t) is constant. Continuity of k and then

gives (ii).

Proof of Theorem 2. (a).* (b). By (4), D- ( y) is

equivalent to sym(MrEL) -0. Since

-1 -1 T'

the latter condition is equivalent to the requirement that

ay. -1 IL -1 A62it

or equivalently

R2 A- O 2 (9)
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As is known, a symmetric tensor A commutes with a tensor B if

and only if ~,leaves invariant the characteristic spaces of A
2

Thus, since the characteristic spaces of ~,and SE coincide,

(9) is equivalent to (ii) and hence Mi of Lemma 2.

(a).-(c). Assume ,-(4n Y). Then, by (6),

-1

Since W- - (M -l

(4n X)skw (M 1  -skw (MC 1 ) (4n Y.sym (MEr')-

using ~ T and the isotropj of 4n

R(4n y)skw ( 0~ 1  skoe(RIi3f(4nV -1 gyT

or equivalently,

-1 -1 -1 l -

Since U commutes with 4n y

2 2 2 2 2 2(tn ) (. Q+_Ir~t M Jr+.%t (.n V) E Jr Jr~t(10)

As before, we will show that U comimutes with 53r by showing

that A.r leaves invariant the characteristic spaces of y.. Thus

fix the time t, let X. denote a principal stretch and A the

corresponding characteristic space for y yt) *choose y. 6 A,

and let

Applying (10) to X and noting that

'f#e.g.# (2), p. 12.
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we arrive at

(4n , - (In XIV s.1ex142+) - Ox . (11

Let 0 be a principal stretch with X and let e be a

corresponding eigenvector, so that 0 - 0. Then taking the

inner product of (11) with e yields

(4n n- X ) ( 0 2+ X.2) 2 ,)2_ ).2) (r.-)-

Thus either ' " 0 or

2 2(12)

and, as we shall show at the end of the proof, (12) implies that

I - . Thus 0 0. We have shown that x is orthogonal to

all characteristic spaces except A. Hence 1L f A and

leaves invariant the characteristic spaces of

Conversely, if S commutes with , then 1 commutes with

-Ln S. Since SE commutes with 4n Y., equation (10) holds trivially,

and reversing the arguments leading to (10) yields the condition

S- I~4 .(4
Thus (c) is equivalent to (ii) and hence (i) of Lema 2.

To complet, the proof we have only to show that (12) implies

- P. Thus let p - nlP/X). Then (12) is equivalent the equation

p- tanh p.

*. .°.

. * ... . . . .

i....



Since te derivative of tan p s(c 1, with equality

only at p -0. This completes the proof of Theorem 2.

Remark. Some other relations which hold when the right

principal axes are essentially fixed are

* -T
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5. (n y) approximates D.

As we have noted in the last section, D - (4n only in

very special circumstances. We now show that (n y) is, however,

a very good approximation to a when the deformations are suffi-

ciently small and slow. More precisely, consider a one-parameter

family LEft) of deformation gradients, depending on a small

parameter E, and assume that the displacement gradient

arc (13)

satisfies

me: OE 01 , E " OIE) (14)

as . 0. Here and in what follows we work at a particular time

t, and for convenience we shall drop the subscript f and the

quantifier *as C 00 in subsequent equations.

hMS 3. The restrictions (14) imply that

p (.C y) + 063). (15)

Proof. We begin by listing three estimates which will be

useful in what follows:

1 12(1
1 2

4A(+A - (It% )
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as IAI 0. In (161, A is arbitrary; in (16)2,3, A s

symmetric.

Our next step will be to estimate the right side of the

identity

"(4 - ~,n ."+ (4,n ,) - Y Ln . (17)

Let

g'ym g~skv.

Then by (13),

2 TT
X~ ML L 2 1Z+

and (16)2,3 yield

11181.. L + p +T _ 2 + 0 ), (18)

I T 234n Y F , aj +~V (V 0(e).

To derive an asymptotic expansion for (4u y) we write 1 )

for 4n V with Y considered as a function of I. Then (18)2

is the Taylor expansion

W)II = . + to (9) () + E" .19) 1LIJ + C£1), (19)

where t'() and EP(). are the first and second (Frechet)

derivatives of E, at 9., with 1,'10)P) linear in p.,

L"(0)(1.,21 symetric and bilinear in (1 12, 2). If we

differentiate (19) with respect to t, we arrive at

. +



on the other hand, if we expand ()about ,- using (14)

we got

(y IV F (2) ] +. '-(), Ip 4 0(ofE 3 ).

Benco

0Q1 0(E 3 ),

and differentiating (18)2 with respect to time yields, after som

work,

(4 y L)+a y 3 (20)

Next,

and so

p _ gym ym (W + 0 (f 3),

= sk w+ 0( e2 ). (1

The estimates (17), (18)2, (20), and (21) imply the desired result (15).

* Remark. Since R. - N(O and (4n V) - (E), the asymptotic

expansion R-(4n~ Y) + 0E)shows (Li Y) to be an excellent

approximation to R.when ILand ~,are small.
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